SOLUCIÓN DE EJERCICIOS
MATEMÁTICAS DISCRETAS – JOHNSONBAUGH 6 EDICIÓN
SOLUCIÓN PROBLEMA 28 CAPÍTULO 1.7 MATEMÁTICAS DISCRETAS JOHNSONBAUGH 6 EDICIÓN
28. Dados n ceros y n unos distribuidos de cualquier manera alrededor de un círculo (vea la figura siguiente), demuestre, por inducción sobre n, que es posible comenzar en algún número y proceder en el sentido de las manecillas del reloj alrededor del círculo hasta la posición original de inicio, de manera que en cualquier punto durante el ciclo se hayan visto al menos la misma cantidad de ceros que de unos. En la siguiente
figura, un punto de inicio posible está marcado con una flecha.
Solución:
Solución 1: Canal
¿Te sirvió el ejercicio? Compártelo
¿Tienes Dudas u otra solución que agregar? Comenta
¿El ejercicio aún no está resuelto? Solicítalo comentando aquí y nuestra comunidad lo resolverá rápidamente. Si tienes la solución ¡Envíala! La comunidad estará agradecida.
¿Quiéres el ejercicio resuelto en menos de 48 horas? Paga desde $US 4 (4 DÓLARES) vía PayPal o desde $ 10.000 pesos (colombianos) vía Nequi si estás en Colombia, comunicándote al whatsapp +573203806207 para confirmar pago, y tendrás el ejercicio resuelto.
5 comentarios en “Ejercicio 28 Capítulo 1.7 Matemáticas Discretas Johnsonbaugh 6 edición”