¿Quiéres el ejercicio resuelto en menos de 48 horas? Paga desde $US 4 (4 DÓLARES)  vía   PayPal   o   desde  $ 10.000 pesos (colombianos) vía Nequi si estás en Colombia, comunicándote al whatsapp +573203806207 para confirmar pago, y tendrás el ejercicio resuelto.

SOLUCIÓN DE EJERCICIOS

MATEMÁTICAS DISCRETAS – JOHNSONBAUGH 6 EDICIÓN

SOLUCIÓN PROBLEMA 56 CAPÍTULO 1.7 MATEMÁTICAS DISCRETAS JOHNSONBAUGH 6 EDICIÓN

56. Si a y b son números reales con a < b, un intervalo abierto (a, b) es el conjunto de números reales x tales que a < x < b. Pruebe que si I1, . . . , In es un conjunto de n ≥ 2 intervalos abiertos tales que cada par tiene una intersección no vacía, entonces (los puntos comunes a I1, . . . , In) es no vacío.

Flavius Josephus era un soldado e historiador judío que vivió en el siglo I (vea [Graham, 1994; Schumer]). Era uno de los líderes de una revuelta judía contra Roma en el año 66. El siguiente año, se encontraba entre un grupo de soldados atrapados que decidieron suicidarse antes de que los capturaran. Una versión de la historia dice que, antes que ser capturados, formaron un círculo y procedieron a matar a cada tercera persona alrededor del círculo. Josephus, que tenía conocimientos de matemáticas discretas, se dio cuenta dónde debían pararse él y un amigo para evitar que los mataran. Los ejercicios 57 al 63 se refieren a una variante del problema de Josephus en el que se elimina a una persona cada dos. Se supone que n personas se colocan en un círculo y se numeran 1, 2, . . . , n en el
sentido de las manecillas del reloj. Se elimina 2, se elimina 4, etcétera, hasta que hay un sobreviviente, denotado por J(n).

Solución:

Solución 1: Canal

 

 

¿Te sirvió el ejercicio? Compártelo

¿Tienes Dudas u otra solución que agregar? Comenta

¿El ejercicio aún no está resuelto? Solicítalo comentando aquí y nuestra comunidad lo resolverá rápidamente. Si tienes la solución ¡Envíala! La comunidad estará agradecida.

¿Quiéres el ejercicio resuelto en menos de 48 horas? Paga desde $US 4 (4 DÓLARES)  vía   PayPal   o   desde  $ 10.000 pesos (colombianos) vía Nequi si estás en Colombia, comunicándote al whatsapp +573203806207 para confirmar pago, y tendrás el ejercicio resuelto.

Deja una respuesta